What Makes People the Most Happy

It’s in the details of 100,000 moments.

What made you happy in the past 24 hours?

Researchers asked 10,000 people this question. More specifically, the collaboration between the University of Tokyo, MIT, and Recruit Institute of Technology asked participants on Mechanical Turk to list 10 happy moments. This generated a corpus of 100,000 happy moments called HappyDB.

With how things are these days, I was happy to read over and analyze such a happy dataset.

Using (basic) natural language processing, I parsed out the main subject, verb, and object of each happy moment. My parser isn’t perfect. Only individual words are categorized rather than phrases, it only uses the first sentence in multi-sentence statements, and it tended to have difficulties with incomplete sentences.

Nevertheless, it seemed to do enough to extract patterns in all these moments. I started with a straightforward look at the most used subjects, verbs, and objects.

Read over the separate parts, and you get a rough idea of what these happy moments are about. As you might expect, the main subject was I in most — a bit over half — of the moments. This covers things like “I bought a new car” and “I had a good dinner”. The remaining half uses subjects that are people or things.

The separated verbs and objects provide a similarly rough idea of what makes people happy. Verbs like got, bought, and ate are easy to associate with happy times, as are objects like time, dinner, and money.

In addition to the happy moments, the dataset also provides a predicted category for each. The researchers note that the estimates are rough, but in my scans, they appear to be a decent baseline and are interesting enough to look at more closely.

With sentences parsed into subject, verb, and object, along with predicted categories as a supplement, I explored the most common types of happy moments for different subjects. After all, moments with the self must be different from moments with a significant other or a stranger. Right?

In the charts below, I break it down for the most common subjects, such as I, we, and friend. Follow the path for the most common verbs for a subject. Then take another step for the most common objects.

I randomly selected examples for each subject-verb-object path, which are really the best part of all of this.

Happy moments with the subject I span the widest range of verbs and objects. The category distribution looks a lot like the overall percentages. In the most used verbs, there appears to be a focus on achievement such as getting a new job, finishing a project, or making a delicious dinner.

The we happy moments look similar to the I happy moments. This shouldn’t surprise since the participants are still talking about themselves.

In contrast, happy moments with friend (or the plural), take on a different dynamic, because they’re about others doing something for the participant or sharing in the joy of others.

The husband and wife happy moments are similar to the friend ones, but with the added sprinkle of affection. After the overarching work-related moments, togetherness and one being there for the other lead. The boyfriend and girlfriend moments look similar.

A child’s happiness is a parent’s happiness.

Kind of like children?

Going into full work mode, the boss enters the picture. Praise and a compliment go a long way.

People love sports, whether it be playing or watching, and they especially enjoy winning. As they say, “Winning cures everything.” This dataset does not cover losing teams.

I really like the someone happy moments. With many of them, it’s about random acts of kindness that are often small and seemingly unnoticed.


  • The HappyDB corpus comes from Akari Asai, Sara Evensen, Behzad Golshan, Alon Halevy, Vivian Li, Andrei Lopatenko, Daniela Stepanov, Yoshihiko Suhara, Wang-Chiew Tan, Yinzhan Xu. You can find more details on processing on the site and on GitHub.
  • After some poking, I filtered down to moments from the United States. All the moments are in English, but many foreign moments were difficult to decipher. Some seemed spammy. For example, one moment was a copy and paste of a short story.
  • I used the Natural Language Toolkit in Python and the Stanford Dependency Parser to identify parts of speech.
  • I drew the charts in R with one-off scripts.

Become a member. Support an independent site. Make great charts.

Join Now


Learn the process of making, designing, and exploring data graphics. Your support goes directly to FlowingData, an independently run site.

What You Get

  • Instant access to tutorials on how to make and design data graphics
  • Source code and files to use with your own data
  • In-depth courses on how to make great charts
  • Hand-picked links to tools and resources
  • Members-only newsletter


Marrying Age

People get married at various ages, but there are definite trends that vary across demographic groups. What do these trends look like?

How Much the Everyday Changes When You Have Kids

I compared time use for those with children under 18 against those without. Here’s where the minutes go.

When Americans Reach $100k in Savings

It was reported that 1 in 6 millennials have at least $100,000 saved. Is this right? It seems high. I looked at the data to find out and then at all of the age groups.

Visualizing the Uncertainty in Data

Data is an abstraction, and it’s impossible to encapsulate everything it represents in real life. So there is uncertainty. Here are ways to visualize the uncertainty.