How Airbnb Visitors Rate Location in Major US Cities

Using ratings to look at the pockets of a city.

Through Airbnb, you can stay in other people’s homes, condos, and apartments, and at the end of your stay you get an email to rate your stay. There are six things they ask you about: the accuracy of the listing, communication, cleanliness, check-in experience, value, and the location.

Beñat Arregi focused on that last one, location, using it as a proxy to see how visitors see a city in different neighborhoods. In the maps you can see where the city centers end and pockets that might not be the best place to visit.

Arregi looked mostly at European cities though, and after seeing there was data available for more US cities from Inside Airbnb, how could I not take a look?

Below are the location ratings for listings in 16 major US cities. Click to embiggen.

I whipped these up pretty quick in R, mapping listings with non-anonymous locations. They’d likely benefit from some aggregation or hexbinning. There’s overlap in the densely populated cities, so some points are obscured. The listings with more reviews are placed on top.

Still though, I think it’s interesting to see the geographic patterns and the sudden shift in ratings.

You might think that the other ratings such as value or overall average correlate to the location rating, but the others actually look pretty random at first glance. I’d have to look more, but my hunch is that the cost goes down with the location rating, and then visitors typically adjust their expectations accordingly.

Mapping Geographic Data in R

Make maps that allow you to see spatial patterns across regions and are great for presentation and communication.

Notes

  • This is based on Beñat Arregi’s maps for mostly European cities. Worth a look.
  • I made these maps in R. The scraped data from Inside Airbnb made the process much more straightforward than if I had to grab the data myself.

Become a member. Support an independent site. Make great charts.

See What You Get

Learn to Visualize Data See All →

How I Made That: Interactive Beeswarm Chart to Compare Distributions

The histogram is my favorite chart type, but it’s unintuitive for many. So I’ve been using the less accurate but less abstract beeswarm.

How to Make an Interactive Choropleth Map

When presented with a static graphic, it can be useful to see specific values after you see overall patterns. This tutorial shows you how to add simple interactions to a choropleth map so you can get specifics for regions.

How I Made That: National Dot Density Map

Mapping one dot per person, it’s all about putting the pieces together.

How to Make a US County Thematic Map Using Free Tools

There are about a million ways to make a choropleth map. The problem is that a lot of solutions require expensive software or have a high learning curve. It doesn’t have to be that way.

Favorites

Causes of Death

There are many ways to die. Cancer. Infection. Mental. External. This is how different groups of people died over the past 10 years, visualized by age.

The Best Data Visualization Projects of 2011

I almost didn’t make a best-of list this year, but …

A Day in the Life: Women and Men

Using the past couple of years of data from the American Time Use Survey, I simulated a working day for men and women to see how schedules differ. Watch it play out in this animation.

Redefining Old Age

What is old? When it comes to subjects like health care and retirement, we often think of old in fixed terms. But as people live longer, it’s worth changing the definition.