Divorce and Occupation

Some jobs tend towards higher divorce rates. Some towards lower.

As people are marrying later and staying single longer, divorce continues to be common in the United States. It’s not the mythical “half of marriages end in divorce” common, but the percentages are up there.

Divorce rates vary a lot by group though. Rates are higher for the unemployed than employed. Divorce among Asians tends to be much lower than other races. Rates change a lot by education level.

So, let’s look at divorce rates by occupation. Using data from the 2015 American Community Survey, for each occupation, I calculated the percentage of people who divorced out of those who married at least once.

Each dot represents an occupation. Mouse over for details.

How fitting it is to see actuaries, assessors of risk and uncertainty, at the bottom with the lowest rate and gaming managers, in charged of games of risk and uncertainty, at the top with the highest rate.
 

Below is a split view for each occupation category, sorted by highest median rate to lowest. Those in transportation and material moving, such as flight attendants and bus drivers, tend to have higher divorce rates. Those in architecture and engineering tend to have lower divorce rates.

 

It kind of looked like salary might be related. After all, education level seems to be. So, here’s divorce rates plotted against median salary per occupation. It’s looking downward slopey.

Those with higher salary occupations tend to have lower divorce rates. That seems pretty clear. But as you know, correlation isn’t causation. If someone who is already a physician, quits and takes a job as a bartender or telemarketer, it doesn’t mean their chances of divorce changes. It probably says more about the person than anything else.

Similarly, those with certain occupations tend to be from similar demographics, which then factors into how the individuals live their lives. But still — interesting. I’m still amused that actuaries ended up with the lowest rate.

Occupation Matchmaker

So that’s who gets divorced. This is who people marry.

Notes

Become a member. Support an independent site. Make great charts.

See What You Get

Learn to Visualize Data See All →

How to Make a Bump Chart in R, with ggplot

Visualize rankings over time instead of absolute values to focus on order instead of the magnitude of change.

How to Use Packed Circles in R

Adjust coordinates, geometries, and encodings with packed circles to make various types of charts.

How to Make Difference Charts in Excel

Also known as a bivariate area chart, the plot type focuses on the comparison between two time series.

Symbols-based Unit Charts to Show Counts in R

Add visual weight by using individual items to show counts.

Favorites

Divorce and Occupation

Some jobs tend towards higher divorce rates. Some towards lower. Salary also probably plays a role.

Life expectancy changes

The data goes back to 1960 and up to the most current estimates for 2009. Each line represents a country.

Years You Have Left to Live, Probably

The individual data points of life are much less predictable than the average. Here’s a simulation that shows you how much time is left on the clock.

Finding the New Age, for Your Age

You’ve probably heard the lines about how “40 is the new 30” or “30 is the new 20.” What is this based on? I tried to solve the problem using life expectancy data. Your age is the new age.