Damian Lillard’s Game-Winner in Context

Damian Lillard of the Portland Trailblazers hit a crazy game-winner the other night. The game was tied, the clock was winding down, and Lillard pulled up from a thousand feet away for the win. Lillard’s straight-faced reaction was as good as the shot.

Here’s how that shot matches up with all of the other threes Lillard has made during his playoff career:

Just nuts.

The R code, in case you’re interested:

library(png)
library(plotrix)

# Load data.
makes3 <- read.csv("https://flowingdata.com/projects/2019/lillard/threes_lillard.tsv", sep="\t")

# Plot all made threes
par(mar=c(0,0,0,0))
plot(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]],
     cex=.7, pch=19, col="#888888", 
     asp=1, bty="n", axes=FALSE, xlab="", ylab="",  
     xlim=c(-25, 25), ylim=c(0, 50))
segments(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]], 
         rep(0, dim(makes3)[1]), rep(5.25, dim(makes3)[1]), 
         lwd=.4, col="#888888")
draw.arc(0, 5.25, 9/12, angle1=0, angle2=2*pi, col="black", lwd=2)

# Game winner
x_win <- -makes3$loc_x[dim(makes3)[1]]
y_win <- makes3$loc_y[dim(makes3)[1]]
segments(x_win, y_win, 0, 5.25, lwd=3, col="#CF082C")

# Note: Download file at https://flowingdata.com/projects/2019/lillard/lillard_face.png
img <- readPNG("lillard_face.png")
rasterImage(img, xleft=x_win-2, xright=x_win+2, ybottom = y_win-2, ytop=y_win+2)
symbols(x_win, y_win, squares = 4, add=TRUE, inches=FALSE, lwd=3, fg="#CF082C")
text(x_win+2.25, y_win, "Bye, OKC.", pos=4, family="Georgia", font=3, cex=.9)

Become a member. Support an independent site. Make great charts.

See What You Get

Favorites

Shifting Incomes for American Jobs

For various occupations, the difference between the person who makes the most and the one who makes the least can be significant.

Air Quality Mapped Over Time

With wildfires burning in the western United States, smoke fills the air. This is an animation of the air quality during the past couple of months.

Most popular porn searches, by state

We’ve seen that we can learn from what people search …

All the Household Types in the U.S.

No need to restrict ourselves to the most common types. There are thousands. Let’s look at all of them.