Damian Lillard’s Game-Winner in Context

Damian Lillard of the Portland Trailblazers hit a crazy game-winner the other night. The game was tied, the clock was winding down, and Lillard pulled up from a thousand feet away for the win. Lillard’s straight-faced reaction was as good as the shot.

Here’s how that shot matches up with all of the other threes Lillard has made during his playoff career:

Just nuts.

The R code, in case you’re interested:

library(png)
library(plotrix)

# Load data.
makes3 <- read.csv("https://flowingdata.com/projects/2019/lillard/threes_lillard.tsv", sep="\t")

# Plot all made threes
par(mar=c(0,0,0,0))
plot(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]],
     cex=.7, pch=19, col="#888888", 
     asp=1, bty="n", axes=FALSE, xlab="", ylab="",  
     xlim=c(-25, 25), ylim=c(0, 50))
segments(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]], 
         rep(0, dim(makes3)[1]), rep(5.25, dim(makes3)[1]), 
         lwd=.4, col="#888888")
draw.arc(0, 5.25, 9/12, angle1=0, angle2=2*pi, col="black", lwd=2)

# Game winner
x_win <- -makes3$loc_x[dim(makes3)[1]]
y_win <- makes3$loc_y[dim(makes3)[1]]
segments(x_win, y_win, 0, 5.25, lwd=3, col="#CF082C")

# Note: Download file at https://flowingdata.com/projects/2019/lillard/lillard_face.png
img <- readPNG("lillard_face.png")
rasterImage(img, xleft=x_win-2, xright=x_win+2, ybottom = y_win-2, ytop=y_win+2)
symbols(x_win, y_win, squares = 4, add=TRUE, inches=FALSE, lwd=3, fg="#CF082C")
text(x_win+2.25, y_win, "Bye, OKC.", pos=4, family="Georgia", font=3, cex=.9)

Become a member. Support an independent site. Make great charts.

See What You Get

Favorites

Real Chart Rules to Follow

There are rules—usually for specific chart types meant to be read in a specific way—that you shouldn’t break. When they are, everyone loses. This is that small handful.

A Day in the Life: Work and Home

I simulated a day for employed Americans to see when and where they work.

Redefining Old Age

What is old? When it comes to subjects like health care and retirement, we often think of old in fixed terms. But as people live longer, it’s worth changing the definition.

All the Household Types in the U.S.

No need to restrict ourselves to the most common types. There are thousands. Let’s look at all of them.