Predicting who needs a working fire alarm

Posted to Statistics  |  Tags: , ,  |  Nathan Yau

In 2014, five people died in New Orleans in a house fire. Three of them were children. There was no working smoke alarm. So the city analytics team and New York-based data group Enigma developed a model to predict which blocks in the city were at high risk.

If the city knew the areas that tended not to have smoke alarms, they could allocate resources appropriately to assure more people had the proper safeguards.

Enigma just expanded the project to more Metropolitan Statistical Areas in what they call Smoke Signals. See what areas near you look like.

To develop the model, they used data from the American Housing Survey and American Community Survey, both conducted by the Census Bureau, as the seed of their solution. The former asks residents if they have a working smoke alarm, which makes it seem straightforward to build a model, but it’s only at the city level. Not useful for on-the-ground workers. The task required block-level information.

Here’s how Enigma did it.

For most places, the data still looks quite noisy, but as Enigma mentions in their process post, this is just a first step. It’s a classification model. It can be refined.

Favorites

10 Best Data Visualization Projects of 2015

These are my picks for the best of 2015. As usual, they could easily appear in a different order on a different day, and there are projects not on the list that were also excellent.

Think Like a Statistician – Without the Math

I call myself a statistician, because, well, I’m a statistics graduate student. However, the most important things I’ve learned are less formal, but have proven extremely useful when working/playing with data.

How We Spend Our Money, a Breakdown

We know spending changes when you have more money. Here’s by how much.

Where People Run in Major Cities

There are many exercise apps that allow you to keep …