Mirador: A tool to help you find correlations in complex datasets

Posted to Software  |  Tags: ,  |  Nathan Yau

Mirador, a collaborative effort led by Andrés Colubri from Fathom Information Design, is a tool that helps you find correlative patterns in datasets with a lot of variables and observations. It’s in the early stages of development, but is available to use and test on Windows and Mac. Colubri explains the process, from its early stages to its current iteration.

Although fields like Machine Learning and Bayesian Statistics have grown enormously in the past decades and offer techniques that allows the computer to infer predictive models from data, these techniques require careful calibration and overall supervision from the expert users who run these learning and inference algorithms. A key consideration is what variables to include in the inference process, since too few variables might result in a highly-biased model, while too many of them would lead to overfitting and large variance on new data (what is called the bias-variance dilemma.)

Leaving aside model building, an exploratory overview of the correlations in a dataset is also important in situations where one needs to quickly survey association patterns in order to understand ongoing processes, for example, the spread of an infectious disease or the relationship between individual behaviors and health indicators.

Download Mirador to try it for yourself.

Favorites

Where Bars Outnumber Grocery Stores

A closer look at the age old question of where there are more bars than grocery stores, and vice versa.

The Most Unisex Names in US History

Moving on from the most trendy names in US history, let’s look at the most unisex ones. Some names have …

10 Best Data Visualization Projects of 2015

These are my picks for the best of 2015. As usual, they could easily appear in a different order on a different day, and there are projects not on the list that were also excellent.

Think Like a Statistician – Without the Math

I call myself a statistician, because, well, I’m a statistics graduate student. However, the most important things I’ve learned are less formal, but have proven extremely useful when working/playing with data.