Damian Lillard’s Game-Winner in Context

Damian Lillard of the Portland Trailblazers hit a crazy game-winner the other night. The game was tied, the clock was winding down, and Lillard pulled up from a thousand feet away for the win. Lillard’s straight-faced reaction was as good as the shot.

Here’s how that shot matches up with all of the other threes Lillard has made during his playoff career:

Just nuts.

The R code, in case you’re interested:

library(png)
library(plotrix)

# Load data.
makes3 <- read.csv("https://flowingdata.com/projects/2019/lillard/threes_lillard.tsv", sep="\t")

# Plot all made threes
par(mar=c(0,0,0,0))
plot(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]],
     cex=.7, pch=19, col="#888888", 
     asp=1, bty="n", axes=FALSE, xlab="", ylab="",  
     xlim=c(-25, 25), ylim=c(0, 50))
segments(-makes3$loc_x[-dim(makes3)[1]], makes3$loc_y[-dim(makes3)[1]], 
         rep(0, dim(makes3)[1]), rep(5.25, dim(makes3)[1]), 
         lwd=.4, col="#888888")
draw.arc(0, 5.25, 9/12, angle1=0, angle2=2*pi, col="black", lwd=2)

# Game winner
x_win <- -makes3$loc_x[dim(makes3)[1]]
y_win <- makes3$loc_y[dim(makes3)[1]]
segments(x_win, y_win, 0, 5.25, lwd=3, col="#CF082C")

# Note: Download file at https://flowingdata.com/projects/2019/lillard/lillard_face.png
img <- readPNG("lillard_face.png")
rasterImage(img, xleft=x_win-2, xright=x_win+2, ybottom = y_win-2, ytop=y_win+2)
symbols(x_win, y_win, squares = 4, add=TRUE, inches=FALSE, lwd=3, fg="#CF082C")
text(x_win+2.25, y_win, "Bye, OKC.", pos=4, family="Georgia", font=3, cex=.9)

Become a member. Support an independent site. Make great charts.

See What You Get

Favorites

How Much Minimum Wage Changed in Each State

Minimum wage has increased over the years, but by how much depends on where you live.

When You Will Die

With absolute certainty, you will die. When will it happen? That is a trickier question. But we can run simulations to explore the possibilities.

Famous Movie Quotes as Charts

In celebration of their 100-year anniversary, the American Film Institute …

Divorce Rates for Different Groups

We know when people usually get married. We know who never marries. Finally, it’s time to look at the other side: divorce and remarriage.