Using open data to find the perfect home

Posted to Maps  |  Tags: , ,  |  Nathan Yau

Justin Palmer and his family have lived in a dense urban area of Portland, Oregon for the past seven years, but now they’re in the market for somewhere more spacious. He narrowed his search down to two main criteria — walking distance to a grocery store and walking distance to a rail stop. The search began with open data.

I defined walking distance as ~5 blocks, but ~10 blocks is still a pretty sane distance. I want to be close to a grocery store and close to a MAX or Streetcar stop. Unfortunately, none of the real estate applications I tried had a feature like this so I decided to create what I needed using open data that I had already been working with for some time now.

Code snippets and explainers follow for how Palmer found his target zones, using a combination of the data, a database, and TileMill.

Favorites

Best Data Visualization Projects of 2016

Here are my favorites for the year.

Shifting Incomes for American Jobs

For various occupations, the difference between the person who makes the most and the one who makes the least can be significant.

Think Like a Statistician – Without the Math

I call myself a statistician, because, well, I’m a statistics graduate student. However, the most important things I’ve learned are less formal, but have proven extremely useful when working/playing with data.

The Best Data Visualization Projects of 2014

It’s always tough to pick my favorite visualization projects. Nevertheless, I gave it a go.