Using open data to find the perfect home

Posted to Maps  |  Tags: , ,  |  Nathan Yau

Justin Palmer and his family have lived in a dense urban area of Portland, Oregon for the past seven years, but now they’re in the market for somewhere more spacious. He narrowed his search down to two main criteria — walking distance to a grocery store and walking distance to a rail stop. The search began with open data.

I defined walking distance as ~5 blocks, but ~10 blocks is still a pretty sane distance. I want to be close to a grocery store and close to a MAX or Streetcar stop. Unfortunately, none of the real estate applications I tried had a feature like this so I decided to create what I needed using open data that I had already been working with for some time now.

Code snippets and explainers follow for how Palmer found his target zones, using a combination of the data, a database, and TileMill.


How You Will Die

So far we’ve seen when you will die and how other people tend to die. Now let’s put the two together to see how and when you will die, given your sex, race, and age.

Where Bars Outnumber Grocery Stores

A closer look at the age old question of where there are more bars than grocery stores, and vice versa.

Marrying Age

People get married at various ages, but there are definite trends that vary across demographic groups. What do these trends look like?

Think Like a Statistician – Without the Math

I call myself a statistician, because, well, I’m a statistics graduate student. However, the most important things I’ve learned are less formal, but have proven extremely useful when working/playing with data.