Using open data to find the perfect home

Posted to Maps  |  Tags: , ,  |  Nathan Yau

Justin Palmer and his family have lived in a dense urban area of Portland, Oregon for the past seven years, but now they’re in the market for somewhere more spacious. He narrowed his search down to two main criteria — walking distance to a grocery store and walking distance to a rail stop. The search began with open data.

I defined walking distance as ~5 blocks, but ~10 blocks is still a pretty sane distance. I want to be close to a grocery store and close to a MAX or Streetcar stop. Unfortunately, none of the real estate applications I tried had a feature like this so I decided to create what I needed using open data that I had already been working with for some time now.

Code snippets and explainers follow for how Palmer found his target zones, using a combination of the data, a database, and TileMill.

Favorites

The Best Data Visualization Projects of 2014

It’s always tough to pick my favorite visualization projects. Nevertheless, I gave it a go.

How We Spend Our Money, a Breakdown

We know spending changes when you have more money. Here’s by how much.

The Changing American Diet

See what we ate on an average day, for the past several decades.

Watching the growth of Walmart – now with 100% more Sam’s Club

The ever so popular Walmart growth map gets an update, and yes, it still looks like a wildfire. Sam’s Club follows soon after, although not nearly as vigorously.