Using open data to find the perfect home

Posted to Maps  |  Tags: , ,  |  Nathan Yau

Justin Palmer and his family have lived in a dense urban area of Portland, Oregon for the past seven years, but now they're in the market for somewhere more spacious. He narrowed his search down to two main criteria — walking distance to a grocery store and walking distance to a rail stop. The search began with open data.

I defined walking distance as ~5 blocks, but ~10 blocks is still a pretty sane distance. I want to be close to a grocery store and close to a MAX or Streetcar stop. Unfortunately, none of the real estate applications I tried had a feature like this so I decided to create what I needed using open data that I had already been working with for some time now.

Code snippets and explainers follow for how Palmer found his target zones, using a combination of the data, a database, and TileMill.


Interactive: When Do Americans Leave For Work?

We don’t all start our work days at the same time, despite what morning rush hour might have you think.

Pizza Place Geography

Most of the major pizza chains are within a 5-mile radius of where I live, so I have my pick, …

19 Maps That Will Blow Your Mind and Change the Way You See the World. Top All-time. You Won’t Believe Your Eyes. Watch.

Many lists of maps promise to change the way you see the world, but this one actually does.

The Best Data Visualization Projects of 2011

I almost didn’t make a best-of list this year, but as I clicked through the year’s post, it was hard …