The important parts of data analysis

Posted to Statistics  |  Tags:  |  Nathan Yau

There's plenty of software to muck around with data, but to gain the skills to really get something out of it, that takes time and experience. Mikio Braun, a post doc in machine learning, explains.

For a number of reasons, I don’t think that you cannot "toolify" data analysis that easily. I wished it would be, but from my hard-won experience with my own work and teaching people this stuff, I'd say it takes a lot of experience to be done properly and you need to know what you're doing. Otherwise you will do stuff which breaks horribly once put into action on real data.

And I don't write this because I don't like the projects which exists, but because I think it is important to understand that you can't just give a few coders new tools and they will produce something which works. And depending on how you want to use data analysis in your company, this might break or make your company.

Braun breaks it down into four bullet points worth a read, but the tl;dr version is that analysis isn't simple, and no tool is going to do everything for you. It's simple with simple data, but you can almost always go deeper with more data, and it takes experience to ask the right questions. So try not to be too content with that software output.


The Best Data Visualization Projects of 2014

It’s always tough to pick my favorite visualization projects. Nevertheless, I gave it a go.

Jobs Charted by State and Salary

Jobs and pay can vary a lot depending on where you live, based on 2013 data from the Bureau of Labor Statistics. Here’s an interactive to look.

Graphical perception – learn the fundamentals first

Before you dive into the advanced stuff – like just about everything in your life – you have to learn the fundamentals before you know when you can break the rules.

How We Spend Our Money, a Breakdown

We know spending changes when you have more money. Here’s by how much.