Charting all the Pokemon

Posted to Statistics  |  Tags: ,  |  Nathan Yau

Pokemon is everywhere these days. I think it’s just something the world really needs right now. I know very little about the universe, but I do like it when people analyze fictional worlds and characters. Joshua Kunst grabbed a data dump about all the Pokemon (seriously, I don’t even know if I’m referring to them/it/thing correctly) and clustered them algorithmically. The t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm to be specific.

Favorites

Marrying Age

People get married at various ages, but there are definite trends that vary across demographic groups. What do these trends look like?

Where Bars Outnumber Grocery Stores

A closer look at the age old question of where there are more bars than grocery stores, and vice versa.

Top Brewery Road Trip, Routed Algorithmically

There are a lot of great craft breweries in the United States, but there is only so much time. This is the computed best way to get to the top rated breweries and how to maximize the beer tasting experience. Every journey begins with a single sip.

10 Best Data Visualization Projects of 2015

These are my picks for the best of 2015. As usual, they could easily appear in a different order on a different day, and there are projects not on the list that were also excellent.