Breakout detection in R

Posted to Software  |  Tags: , ,  |  Nathan Yau

Say you have time series data and you want to detect significant changes, but there’s also a lot of noise to sift through. Twitter released an open source R package, BreakoutDetection, to help with that.

Our main motivation behind creating the package has been to develop a technique to detect breakouts which are robust, from a statistical standpoint, in the presence of anomalies. The BreakoutDetection package can be used in wide variety of contexts. For example, detecting breakout in user engagement post an A/B test, detecting behavioral change, or for problems in econometrics, financial engineering, political and social sciences.

Was a quick installation and worked as expected for me. Twitter has released plenty of open source projects, but I think this is the first R package. Nice.

Favorites

Graphical perception – learn the fundamentals first

Before you dive into the advanced stuff – like just about everything in your life – you have to learn the fundamentals before you know when you can break the rules.

The Most Unisex Names in US History

Moving on from the most trendy names in US history, let’s look at the most unisex ones. Some names have …

Think Like a Statistician – Without the Math

I call myself a statistician, because, well, I’m a statistics graduate student. However, the most important things I’ve learned are less formal, but have proven extremely useful when working/playing with data.

Most popular porn searches, by state

We’ve seen that we can learn from what people search for, through the eyes of Google suggestions: state stereotypes, national …