A principal component analysis step-by-step

Posted to Statistics  |  Tags:  |  Nathan Yau

Sebastian Raschka offers a step-by-step tutorial for a principal component analysis in Python.

The main purposes of a principal component analysis are the analysis of data to identify patterns and finding patterns to reduce the dimensions of the dataset with minimal loss of information.

Here, our desired outcome of the principal component analysis is to project a feature space (our dataset consisting of n x d-dimensional samples) onto a smaller subspace that represents our data “well”. A possible application would be a pattern classification task, where we want to reduce the computational costs and the error of parameter estimation by reducing the number of dimensions of our feature space by extracting a subspace that describes our data “best”.

That is, imagine you have a dataset with a lot of variables, some of them important and some of them not so much. A PCA helps you identify which is which, so the source doesn’t seem so unwieldy or to reduce overhead.

Favorites

How You Will Die

So far we’ve seen when you will die and how other people tend to die. Now let’s put the two together to see how and when you will die, given your sex, race, and age.

Unemployment in America, Mapped Over Time

Watch the regional changes across the country from 1990 to 2016.

Jobs Charted by State and Salary

Jobs and pay can vary a lot depending on where you live, based on 2013 data from the Bureau of Labor Statistics. Here’s an interactive to look.

Where People Run in Major Cities

There are many exercise apps that allow you to keep track of your running, riding, and other activities. Record speed, …