Basketball analytics

Posted to Statistics  |  Tags: ,  |  Nathan Yau

Kirk Goldsberry talks the rise of analytics usage in the NBA. With cameras above every court recording player movements, there’s a higher granularity analysis that is now possible, beyond the box score. One of the key metrics is expected possession value, or EPV, which estimates the number of points a possession is worth, given where everyone is on the court and where the ball is.

But the clearest application of EPV is quantifying a player’s overall offensive value, taking into account every single action he has performed with the ball over the course of a game, a road trip, or even a season. We can use EPV to collapse thousands of actions into a single value and estimate a player’s true value by asking how many points he adds compared with a hypothetical replacement player, artificially inserted into the exact same basketball situations. This value might be called “EPV-added” or “points added.”

As a basketball fan, I hope this makes the game more fun and interesting to watch, and as a statistician, I hope this work can be applied to other facets of life like traffic or local movements. If just the latter, that’d be fine too.

Favorites

How You Will Die

So far we’ve seen when you will die and how other people tend to die. Now let’s put the two together to see how and when you will die, given your sex, race, and age.

Years You Have Left to Live, Probably

The individual data points of life are much less predictable than the average. Here’s a simulation that shows you how much time is left on the clock.

19 Maps That Will Blow Your Mind and Change the Way You See the World. Top All-time. You Won’t Believe Your Eyes. Watch.

Many lists of maps promise to change the way you see the world, but this one actually does.

The Best Data Visualization Projects of 2014

It’s always tough to pick my favorite visualization projects. Nevertheless, I gave it a go.