Optimizing your R code

May 9, 2014

Hadley Wickham offers a detailed, practical guide to finding and removing the major bottlenecks in your R code.

It’s easy to get caught up in trying to remove all bottlenecks. Don’t! Your time is valuable and is better spent analysing your data, not eliminating possible inefficiencies in your code. Be pragmatic: don’t spend hours of your time to save seconds of computer time. To enforce this advice, you should set a goal time for your code and only optimise only up to that goal. This means you will not eliminate all bottlenecks. Some you will not get to because you’ve met your goal. Others you may need to pass over and accept either because there is no quick and easy solution or because the code is already well-optimized and no significant improvement is possible. Accept these possibilities and move on to the next candidate.

This is how I approach it. Some people spend a lot of time optimizing, but I’m usually better off writing code without speed in mind initially. Then I deal with it if it’s actually a problem. I can’t remember the last time that happened though. Obviously, this approach won’t work in all settings. So just use common sense. If it takes you longer to optimize than it does to run your “slow” code, you’ve got your answer.

Favorites

Years You Have Left to Live, Probably

The individual data points of life are much less predictable than the average. Here’s a simulation that shows you how much time is left on the clock.

How You Will Die

So far we’ve seen when you will die and how other people tend to die. Now let’s put the two together to see how and when you will die, given your sex, race, and age.

A Day in the Life of Americans

I wanted to see how daily patterns emerge at the individual level and how a person’s entire day plays out. So I simulated 1,000 of them.

Where Bars Outnumber Grocery Stores

A closer look at the age old question of where there are more bars than grocery stores, and vice versa.